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Abstract— This paper addresses fault diagnosis in dynamic systems represented by discrete state-space models. 
The main idea of the paper is to propose a systematic way to implement a Petri net-based fault diagnosis system. 
This procedure consists of three main steps. In the first step, a fault diagnosis system is built based on the 
Luenberger observer. In the second step, the obtained fault diagnoser equations are transformed to a suitable 
format. Finally, in the third step, the obtained equations are implemented by a Petri net called continuous-time 
delay Petri net (CTDPN) that can realize difference equations. Based on this method, a systematic approach is 
proposed for realizing a classical fault diagnoser by CTDPN. By integrating the concept of state-space observers 
and PNs in this paper, new and effective methods are developed for the analysis and fault diagnosis of systems - 
known as hybrid systems - that have both continuous and discrete variables. The performance of the proposed 
method is thoroughly investigated, and the obtained results show that the proposed CTDPN can precisely detect 
the occurred faults, their types and their occurrence time instances. 
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1. INTRODUCTION  

As industrial processes become more complex, the need for more reliability and 

availability of these systems has increased. For this reason, the problem of fault diagnosis and 

fault tolerability in the system has been a major part of research in recent years [1-5]. Among 

the various methods for fault diagnosis in dynamic systems, model-based fault diagnosis 

methods are of great importance and have many applications in a wide range of fields. These 

methods, which have been common since the 1970s, use a model to predict system behavior. 

Due to the increasing capability and efficiency of computers and the development of control 

theories in recent decades, attention to these methods has also increased. Despite the breadth 

and variety of these methods, they can be divided into two general categories of quantitative 

and qualitative methods based on the type of model and the nature of the signals measured 

[6-8]. Quantitative model-based methods, which are the subject of this paper fall into these 

approaches and include three main categories: parameter estimation methods, observer-based 

methods and methods based on parity equations [9]. 

Applying the aforementioned methods to fault diagnosis for real plants faces critical 

challenges. One of the main challenges is that many of these systems have both continuous 

and discrete variables. These systems, known as hybrid systems, have many complexities and 

their modeling is a challenge [10, 11]. The most common frameworks for modeling these 

systems are hybrid automata and hybrid Petri nets (PNs). PNs are powerful modeling tools 

with intuitive graphical representation for the simulation of systems. Since their introduction 

by Carl Adam Petri, a wide variety of these networks have been developed and used for 

many applications. They also provide a formalism for setting up state equations and algebraic 
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equations governing the behavior of the system [12]. Although classic PNs were only used to 

model discrete event systems (DESs) in the early years, certain types of continuous PNs have 

been introduced – recently - to model continuous dynamic processes. This led to improved 

analysis and modeling of hybrid systems [13, 14]. 

In recent years, a lot of work has been done in the field of modeling hybrid systems by 

continuous PNs, but only a handful of these papers are devoted to the subject of fault 

diagnosis of such systems, while in light of the features of continuous PNs, more effective 

fault diagnosis systems can be built for hybrid systems [15, 16]. In [17, 18], a special type of 

continuous PN called continuous time delay Petri net (CTDPN) - which can model discrete-

time continuous linear systems - was introduced. In [19], a systematic method was presented 

for implementing state equations by CTDPN. In [20], with the help of these PNs, a fault 

diagnosis system based on parity equations has been proposed. 

1.1. Related Literature 

Using PNs for fault diagnosis systems has been reviewed in some papers 

simultaneously with other models such as automata [21-26]. In [22], three main methods -

including the algebraic method for fault diagnosis - have been investigated. In [27-29], faults 

have been considered for both transitions and places in PNs. Then, a redundant diagnoser PN 

has been constructed and attached to the main PN. In the diagnosis scheme presented in [27], 

nonzero marking values of redundant places are decoded to indicate the faults. Similar to 

[27], in this paper, we constructed a redundant CTDPN in which the marking values are 

identical to the residuals indicating the faults. In [30], faults were modeled by unobservable 

transitions and an algorithm was presented to separate the faulty part. In that method, there 

is no need for a redundant network for fault diagnosis, and this is the main advantage of this 

method over our paper. However, this method is applicable only for pure DESs. In [24, 25], a 

diagnoser based on the reachability graph has been proposed and analyzed for bounded PNs 

(a PN with limited marking value). Since this graph cannot be constructed for continuous 

PNs, that method is not applicable for continuous variable dynamic systems (CVDSs). 

As mentioned before, alternative PNs such as continuous Petri nets (CPNs), timed 

continuous Petri nets (TCPN), hybrid Petri nets (HPN) and CTDPNs have been introduced to 

model and analyze continuous dynamic systems [17, 21, 31]. Authors of [31] presented a 

survey of using HPNs for logistic purposes. In [32], CPNs have been applied for modeling 

and analyzing biological systems. The marking values of PNs introduced in [31-33] are 

positive real numbers. Thus, those PNs cannot be utilized for modeling CVDSs whose state 

variables have negative values, while this limitation does not exist in the network employed 

in our paper.   

A few studies have addressed the fault diagnosis in TCPN [34-36]. In [34], a fault 

modeling framework based on hybrid automata has been presented. In that paper, an online 

monitoring approach based on a timed PN model abstracted the continuous dynamic system 

into a DES. Contrary to [34], a CVDS is modeled directly by a CTDPN in the present paper. 

Moreover, authors of [35] have implemented an adaptive fault diagnoser for a system 

modeled by a TCPN under infinite server semantics. That work had proposed a single 

diagnoser model whose structure was known, and its parameters were updated depending 
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on the fault occurrence. In that model, identification algorithms based on heuristic 

optimization methods have been used to identify unknown fault parameters.  

Compared with the present study, the method proposed in [35] is more complex and 

cannot be implemented online by programmable logic controllers (PLCs).  

In comparison with the cited works, the main contributions of the present paper are: 

 Introducing a novel approach for the fault diagnosis of a CVDS by a CTDPN 

 Presenting a direct path to implement conventional quantitative diagnosers by PNs 

 Developing the previous algebraic methods for fault diagnosis in DESs by PNs to 

CVDSs by CTDPNs.  

1.2. Motivation 

Over the past decade, the use of powerful PLCs has been widespread in various 

industries [37, 38]. As a result, the idea of implementing the online diagnoser and the 

feedback controller on the same PLC, has been given more attention. This implementation 

reduces additional equipment for fault diagnosis purposes, such as sensors and 

communication buses. It also increases the fault detection speed [16, 39, 40].  

In this way, an essential and challenging issue is that the online diagnoser system 

should be easily implemented by one of the standard PLC programming languages. As 

shown in the few works that addressed the problem of implementing online diagnosis on a 

PLC, PN-based diagnosis has better compatibility with PLC programming languages such as 

ladder diagram (LD) or sequential function chart (SFC) [16, 39-41]. All those works are about 

DESs, and to the best of the author’s knowledge, no research has considered the problem of 

implementing online PN-based diagnosers for CVDSs on a PLC.  

Thus, the main motivations for the present work are as follows: 

 The lack of a general framework for implementing the well-known fault diagnosis 

methods for CVDS on PLCs.  

 Providing a unified formalism based on PNs for fault diagnosis in hybrid systems that 

exhibit both continuous and discrete dynamic behaviors.  

 Access to more convenient and efficient online fault diagnosers implemented on PLCs. 

1.3. Novelty 

The main innovation of this paper is proposing an algorithm to construct a diagnostic 

system by a CTDPN. In [20], we have presented an approach for the fault diagnosis method 

based on parity equations. In this paper, this issue is developed for the fault diagnosis method 

based on an observer. To the best of the author’s knowledge, this has not been done yet and 

could be an essential step in implementing well-known fault diagnosis methods for hybrid 

systems.  

In this paper, based on the CTDPN introduced in [20], an observer-based fault diagnosis 

system is realized for a discrete-time continuous linear system. Initially, a fault diagnoser is 

designed using the conventional Luenberger method. The inputs of this diagnoser are 

observed values of the system’s input and output signals. The output signals of the diagnoser 

known as residuals indicate the faults occurrence and their type.  
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This diagnosis system consists of a set of difference equations, which are then 

implemented by a Petri net. The network used is a CTDPN. The main innovation of this paper 

is to present a systematic method for building this network. 

The CTDPN proposed in this paper is an integrated network that both simulates the 

system and generates residues. This paper presents a systematic method for implementing an 

observer-based diagnostic system with the help of PNs. In the resulting PN, places - whose 

marking values determine the residues - are considered. The most important novelty of the 

paper is that it provides a simple and intuitive way to diagnose faults in dynamic systems, 

and can be easily generalized to hybrid systems. 

This paper is organized as follows: in section 2, an overview of the CTDPN is presented. 

In section 3, the observer-based fault diagnosis method for discrete-time systems is briefly 

reviewed. Section 4 illustrates the implementation steps of the proposed diagnoser by the 

proposed PN, and – finally - section 5 examines the performance of the proposed system 

using an example. 

2. PRELIMINARIES 

In this section, some of the main definitions concerned with continuous PN and 

CTDPN are introduced. For further reading, it is recommended to refer to [17, 26]. 

Definition 1 [26]: A PN is a structure 𝑁 = (𝑃, 𝑇, 𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡,𝑀0) where 𝑃 = {𝑃1, 𝑃2, … , 𝑃𝑚} is the 

set of m places, 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛}  is the set of n transitions, 𝑃𝑟𝑒: 𝑃 × 𝑇 → 𝑁  is the pre-

incidence function specifying the number of arcs directed from places to transitions (called 

“pre” arcs) and represented by an m×n matrix, 𝑃𝑜𝑠𝑡: 𝑃 × 𝑇 → 𝑁 is the post-incidence function 

specifying the number of arcs directed from transitions to places (called “post” arcs) and 

represented by an m×n matrix, and 𝑀0  is the initial marking. The incidence matrix 𝑊            

is equal to 𝑊 = 𝑃𝑜𝑠𝑡 − 𝑃𝑟𝑒 . For a transition  ∈ 𝑇 , its sets of input and output places               

are respectively defined as •𝑡= {p ∈ P | Pre (p, 𝑡) > 0}, and 𝑡•= {p ∈ P | Post (p, 𝑡) > 0},      

while given a place p ∈ P, its set of input and output transitions are defined as                         

•p = {𝑡 ∈ T | Post (p, 𝑡) > 0}, p• = {𝑡 ∈ T | Pre (p, 𝑡) > 0}. 

Definition 2 [26]: A marking is a function M: P → N that assigns to each place a non-

negative integer number of tokens. The marking of a PN defines its state. 

Definition 3 [26]: A transition 𝑡𝑖 is enabled at a marking M, if M ≥ Pre (·,𝑡𝑖), i.e., if each place 

p ∈ P contains a number of tokens greater than or equal to Pre (p, 𝑡𝑖). 

Definition 4 [26]: A transition 𝑡𝑖 enabled at a marking M can fire. The firing of 𝑡𝑖 removes  

Pre (p, 𝑡𝑖) tokens from each place p ∈ P and adds Post (p, 𝑡𝑖) tokens in each place p ∈ P, 

yielding a new marking:  

𝑀′ = 𝑀 − 𝑃𝑟𝑒(. , 𝑡𝑖) + 𝑃𝑜𝑠𝑡(. , 𝑡𝑖) = 𝑀 + 𝑊(. , 𝑡𝑖).          (1) 

To denote that the firing of 𝑡𝑖 from M leads to 𝑀′, we write 𝑀 [𝑡𝑖  𝑀′. Let S be a firing 

sequence which can be performed from a marking 𝑀0, and suppose that 𝑀𝑘  is reachable 

from 𝑀0 by applying S [4, 11]. The characteristic vector of sequence S, written as s, is the       

m-component vector whose component number i corresponds to the number of firings of 

transition 𝑡𝑖 in sequence S, i.e.  

𝑠 = 𝑠1 + 𝑠2 + ⋯+ 𝑠𝑘−1,            (2) 
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where 𝑠𝑗 represents the firing transition of 𝑡𝑗. In this case, 𝑀𝑘 is obtained by fundamental 

equation:  

𝑀𝑘 = 𝑀𝑜 + 𝑊𝑠.             (3) 

Definition 5 [21]: A marked autonomous CPN is a five-tuple 𝑅 = (𝑃, 𝑇, 𝑃𝑟𝑒, 𝑃𝑜𝑠𝑡,𝑀0) such 

that P and T are the same as Definition 1,  𝑃𝑟𝑒: 𝑃 × 𝑇 → 𝑅+ and 𝑃𝑜𝑠𝑡: 𝑃 × 𝑇 → 𝑅+ are the input 

and output incidence applications, respectively and 𝑀0: 𝑃 → 𝑅+  is the initial marking. 

𝑃𝑟𝑒(𝑃𝑖 , 𝑡𝑗) denotes the weight of the arc 𝑃𝑖 → 𝑡𝑗 and it is a positive real number if the arc 

exists, and 0 otherwise. Similarly, 𝑃𝑜𝑠𝑡(𝑡𝑗, 𝑃𝑖) is the weight of the arc 𝑡𝑗 → 𝑃𝑖. In addition, a 

place marking must be a real number since it may change continuously. In a continuous PN, 

places and transitions are represented by a double line. 

Definition 6 [21]: In a continuous PN, the enabling degree of transition 𝑡𝑗 for marking M, 

denoted by q or q (𝑡𝑗, M), is the real number q such that: 

𝑞 = 𝑚𝑖𝑛
𝑖: 𝑃𝑖∈•𝑡𝑗

(
𝑀(𝑃𝑖)

𝑃𝑟𝑒(𝑃𝑖,𝑡𝑗)
).                        (4) 

if q > 0, transition 𝑡𝑗 is enabled, and it is said to be q-enabled. Definition 6 is applied to a 

generalized PN. In the particular case of a PN in which the weight is 1 for all input arcs to the 

transitions, Eq. (4) can be simplified as:  

𝑞 = 𝑚𝑖𝑛
𝑖: 𝑃𝑖∈•𝑡𝑗

(𝑀(𝑃𝑖)) .             (5) 

Definition 7 [21]: A TCPN is a pair (R, Spe) such that R is a marked autonomous continuous 

PN (c. f. Definition 5), and Spe indicates a function from the set T of transitions to 𝑅+ ∪ {∞}. 

For each 𝑡𝑗, Spe (𝑡𝑗)=𝑉𝑗 is the maximal speed associated with transition 𝑡𝑗. The instantaneous 

firing speed 𝑣𝑗(𝑡𝑗) satisfies the condition 𝑣𝑗(𝑡𝑗) ≤ 𝑉𝑗(𝑡𝑗) [21]. For a TCPN, between times 𝜏 

and 𝜏 + 𝑑𝜏, the quantity of firing of 𝑡𝑗 is 𝑣𝑗(𝜏). 𝑑𝜏; then, s in Eq. (3) corresponds to the vector 

𝑣(𝜏). 𝑑𝜏. It follows that: 

𝑑𝑀(𝜏) = 𝑊 ∙ 𝑣(𝜏),             (6) 

then 

𝑀(𝜏2) = 𝑀(𝜏1) + 𝑊 ∫ 𝑣(𝜏)𝑑𝜏
𝜏2

𝜏1
,             (7) 

is the fundamental equation for a TCPN. It works for any 0≤ 𝜏1 ≤ 𝜏2 [21].  

Definition 8 [17]: A CTDPN is a TCPN in which each transition firing plays the role of a unit 

time delay. In fact, in this TCPN, when a transition is enabled, it is fired after a time delay 

(e.g. 𝑇𝑠). Moreover, in this PN, the following assumptions are held [17]: 

Assumption 1. Place tokens and weights of the arcs in CTDPN can be negative or non-

negative real numbers at any time. 

Assumption 2. A transition is enabled if 𝑀(𝑝𝑖) > 0 or 𝑀(𝑝𝑖) < 0.  

Assumption 3. The speed of the transitions is infinity.  

Assumption 4. When transitions are fired, values of tokens of input places become zero.  

According to the theorem presented in [20], it can be seen that when 𝑡𝑗 is fired at time 

instance 𝑘𝑇𝑠, the entire marking is transported instantaneously at this time such that: 

∆𝑚𝑗 = ∫ 𝑑𝑚𝑗
𝑘𝑇𝑠

+

𝑘𝑇𝑠
− = 𝑞𝑗(𝑘𝑇𝑠

−) = ∫ 𝑣𝑗(𝜏)
𝑘𝑇𝑠

+

𝑘𝑇𝑠
− . 𝑑𝜏.                     (8) 
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Here, 𝑘𝑇𝑠
− = 𝑘𝑇𝑠 − 𝜀 = (𝑘 − 1)𝑇𝑠  and 𝑘𝑇𝑠

+ = 𝑘𝑇𝑠 + 𝜀 = 𝑘𝑇𝑠, where 𝜀 → 0. For simplicity, from 

now on, 𝑘𝑇𝑠 is abbreviated to k. From Corollary 1 of [15], it is also concluded that: 

𝑞(𝑡𝑗) = 𝑚𝑖𝑛
𝑖: 𝑃𝑖∈•𝑡𝑗

(𝑚(𝑃𝑖)) = 𝑚(𝑃𝑗)).  

By considering all marking places, it can be seen that ∫ 𝑣(𝜏)
𝜏2

𝜏1
. 𝑑𝜏 = 𝑀(𝑘 − 1), where  

𝜏1 = (𝑘 − 1)𝑇𝑠 and 𝜏2 =  𝑘𝑇𝑠. Finally, Eq. (7) for this network can be written as follows: 

𝑀(𝑘) = 𝑀(𝑘 − 1) + 𝑊𝑀(𝑘 − 1) = (𝐼 + 𝑊)𝑀(𝑘 − 1)        (9)  

3. OBSERVER BASED FAULT DIAGNOSER DESIGN  

This section briefly reviews how to design fault diagnoser system based on 

Leuenberger's observer [20].  

For a given linear system with p inputs, r outputs and n state variables, the discrete-time 

state-space model is described by:  

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝐿𝑓𝑙(𝑘))         (10) 

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢(𝑘) + 𝑀𝑓𝑚(𝑘),         (11) 

in which 𝐴, 𝐵, 𝐶 and 𝐷 denote the state-space matrices, 𝑓𝑙(𝑘) are additive faults on the states, 

𝑓𝑚(𝑘) are additive faults on the outputs and 𝐿 and 𝑀 are gain matrices of faults. The number 

of additive faults with states is equal to l, and the number of additive faults with outputs is 

equal to m. 

Based on Luenberger's design method, an observer is realized in the form of Eqs. (12) 

and (13). 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝐻(𝑦(𝑘) − 𝐶𝑥(𝑘)         (12) 

𝑦̂(𝑘) = 𝐶𝑥(𝑘).            (13) 

where 𝑥(𝑘) is the estimated state vector, 𝑦̂(𝑘) is the estimated output vector, and H is the 

observer gain matrix. Note that in the observer output equations, only the estimated states are 

considered so that the fault can be detected by comparing the output produced by the 

observer and the actual output [9]. Without losing the generality, and for simplicity, the 

matrix D is assumed zero according to most real examples in this paper.  

Also, 𝑥̃(𝑘) = 𝑥(𝑘) − 𝑥(𝑘) denotes state estimation error and 

𝑟(𝑘) = 𝑒(𝑘) = 𝑦(𝑘) − 𝑦̂(𝑘) = 𝑐𝑥̃(𝑘) + 𝑀𝑓𝑚(𝑘)       (14) 

is a vector that shows residuals used for fault diagnosis. 

 By calculating residuals at k, k+1, and k+2 time instances, the following results are 

obtained: 

x̂(k+1)=Ax̂(k)+Bu(k)+Hy(k)-HC x̂(k)=(A-HC)x̂(k)+Bu(k)+Hy(k).  

x̂(k+1)=(A-HC)x̂(k)+Bu(k)+HCx(k)+HMf
m

(k). 

 ŷ(k+1)=C(A-HC)x̂(k)+CBu(k)+CHCx(k)+CHMf
m

(k) 

y(k+1)=Cx(k+1)+Mf
m

(k+1)=CAx(k)+CBu(k)+CL f
L
(k)+ Mf

m
(k+1) 

𝑒(𝑘 + 1) = 𝑦(𝑘 + 1) − 𝑦̂(𝑘 + 1) = 𝐶𝐴𝑥(𝑘) + 𝐶𝐵𝑢(𝑘) + 𝐶𝐿𝑓𝑙(𝑘) − 𝐶(𝐴 − 𝐻𝐶)𝑥(𝑘) −

     𝐶𝐵𝑢(𝑘) − 𝐶𝐻𝐶𝑥(𝑘) − 𝐶𝐻𝑀𝑓𝑚(𝑘) + 𝑀𝑓𝑚(𝑘 + 1) = 𝐶(𝐴 − 𝐻𝐶)𝑥(𝑘) − 𝐶(𝐴 − 𝐻𝐶)𝑥̂(𝑘) +

     𝐶𝐿𝑓𝑙(𝑘) − 𝐶𝐻𝑀𝑓𝑚(𝑘) + 𝑀𝑓𝑚(𝑘 + 1)         (15) 
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 𝑥(𝑘 + 2) = 𝐴𝑥(𝑘 + 1) + 𝐵𝑢(𝑘 + 1) + 𝐿 𝑓𝐿(𝑘 + 1)  

  = CA
2

x(k)+CABu(k)+CALf
l
(k)+CBu(k+1)+CLf

l
(k+1)+Mf

m
(k+2)   

 y(k+2)=Cx(k+2)+M f
m
(k+2)= CAx(k+1)+CBu(k+1)+CL f

l
(k+1)+ M f

l
(k+2) 

 y(k+2)=CA
2

x(k)+CABu(k)+CALf
l
(k)+CBu(k+1)+CLf

l
(k+1)+Mf

m
(k+2)    

x̂(k+2)=(A-HC)
2 

x̂(k)+(A-HC)Bu(k)+(A-HC)HCx(k)+(A-HC)HMf
m
(k)+HCAx(k)+Bu(k+1)+  

HCBu(k)+HCL f
l
(k)+HMf

m
(k+1) 

 𝑦̂(𝑘 + 2) = 𝐶(𝐴 − 𝐻𝐶)2 𝑥(𝑘) + 𝐶(𝐴 − 𝐻𝐶)𝐵𝑢(𝑘) + 𝐶𝐻𝐶𝐵𝑢(𝑘) + [𝐶(𝐴 − 𝐻𝐶)𝐻𝐶 + 𝐶𝐻𝐶𝐴]𝑥(𝑘) 

+𝐶(𝐴 − 𝐻𝐶)𝐻𝑀𝑓𝑚(𝑘) + 𝐶𝐻𝑀𝑓𝑚(𝑘 + 1) + 𝐶𝐵𝑢(𝑘 + 1) + 𝐶𝐻𝐶𝐿𝑓𝑙(𝑘)  

e(k+2)=y(k+2)-ŷ(k+2)=e(k+2)=y(k+2) − ŷ(k+2)  

 =CA2 x(k)+CABu(k)+CALf
l
(k)+CBu(k+1)+CLf

l
(k+1)+M f

m
(k+2)-C (A-HC)

2 
x̂(k) −

                     C(A-HC)Bu(k)-CHCBu(k) − [C(A-HC)HC+CHCA]x(k)-C(A-HC)HMf
m
(k)  

-CHMf
m
(k+1)-CBu(k+1)-CHCf

l
(k)              

= [CA2-CAHC+C (HC)2-CHCA]x(k)+CALf
l
(k)+CLf

l
(k+1)+Mf

m
(k+2)- 

C(A-HC)
2 

 x̂(k)-C(A-HC)HMf
m
(k)-CHMf

m
(k+1)  

e (k+2)=C[A-HC] 2(x(k)-x̂(k))+Mf
m
(k+2)-CHMf

m
(k+1)-C(A-HC)HMf

m
(k) 

   +𝐶𝐿𝑓𝑙(𝑘 + 1) + 𝐶𝐴𝐿𝑓𝑙(𝑘)                     (16) 

From Eqs. (14-16),  results:  

[
𝑒(𝑘)

𝑒(𝑘 + 1)

𝑒(𝑘 + 2)
] = [

𝐶
𝐶(𝐴 − 𝐻𝐶)

𝐶(𝐴 − 𝐻𝐶)2
] 𝑥̃(𝑘) + [

M 0 0
-CHM M 0

-C(A-HC)HM -CHM 0
] [

fm(k)
fm(k+1)

fm(k+2)
]  

                      +[
0 0 0
𝐶𝐿 0 0

𝐶(𝐴 − 𝐻𝐶)𝐿 𝐶𝐿 0
] [

𝑓𝑙(𝑘)

𝑓𝑙(𝑘 + 1)

𝑓𝑙(𝑘 + 2)
] .       (17) 

Of course, these equations can generally be continued for a window of length q (i.e., up 

to e (k +q)), which was written here briefly up to q=2. 

Remark: A prerequisite for designing the observer is that the system, defined by Eqs. (10) and 

(11) should be completely observable. As a result, the system observability matrix, defined as 

shown in the following equation, must be a full rank matrix. 

∅𝑜 =

[
 
 
 
 
 
 

𝐶
𝐶𝐴
𝐶𝐴2

.

.

.

𝐶𝐴𝑛−1]
 
 
 
 
 
 

            (18) 

The matrix H must be chosen so that the eigenvalues of the matrix Â = A − HC are all 

stable. Thus, it can be ensured that the estimation error ( x̃(k)) converges to zero with 

increasing time (k). Also, if this matrix is selected optimally, the convergence time of the 

observer may be adjusted to the shortest time. We investigate the effect of the observer pole’s 

location on the convergence time of the observer in the examples presented in section 5. 
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As a result, the vector 𝑟(𝑘) = [𝑒(𝑘)𝑇 𝑒(𝑘 + 1)𝑇 𝑒(𝑘 + 2)𝑇]𝑇  only includes the effect of 

system faults. If there is no fault in the system, this vector is zero. By defining the appropriate 

filter 𝑉 = [𝑣0;  𝑣1;… 𝑣𝑔], the structured residual vector can be calculated as follows 

𝑟𝑠(𝑘) = [𝑟(𝑘)  𝑟(𝑘 − 1)  𝑟(𝑘 − 2)]. 𝑉         (19) 

Here, g indicates the order of the filter. In this paper, g is equal to q=2. Values of each element 

of rs (k) indicate the occurrence of one of the faults in the system.  

4. REALIZATION OF FAULT DIAGNOSER BY CTDPN  

This section describes the steps for realizing an observer-based diagnostic system - 

described in the previous section - using a CTDPN. 

a) Initially, the observer equations are rewritten in backward form as follows: 

𝑥(𝑘) = (𝐴 − 𝐻𝐶)𝑥(𝑘 − 1) + 𝐵𝑢(𝑘 − 1) + 𝐻𝑦(𝑘 − 1)      (20) 

𝑦̂(𝑘) = 𝐶𝑥(𝑘) = 𝐶(𝐴 − 𝐻𝐶)𝑥(𝑘 − 1) + (𝐶𝐵 + 𝐷)𝑢(𝑘 − 1) + 𝐶𝐻𝑦(𝑘 − 1)     (21) 

Also, the residual values for a window of length q=2 are defined as follows: 

𝑟(𝑘) = 𝑦(𝑘 − 1) − 𝑦̂(𝑘 − 1)          (22) 

𝑟1(𝑘) = 𝑟(𝑘 − 1)            (23) 

𝑟2(𝑘) =  𝑟1(𝑘 − 1)            (24) 

𝑟𝑠(𝑘) = [(𝑦(𝑘 − 1) − 𝑦̂(𝑘 − 1)) 𝑟(𝑘 − 1) 𝑟1(𝑘 − 1)]. 𝑉       (25) 

b) For each signal variable in Eqs. (20-25), a place is assigned in the CTDPN. Therefore, 

the CTDPN marking vector 𝑀(𝑘)  contains actual and estimated input and output 

vectors and residual vectors. Thus, 

𝑀(𝑘) = [𝑢𝑇(𝑘) 𝑦𝑇(𝑘) 𝑥̂𝑇(𝑘) 𝑦̂𝑇(𝑘)  𝑟𝑇(𝑘)  𝑟1
𝑇(𝑘) 𝑟2

𝑇(𝑘) 𝑟𝑠𝑇(𝑘)]𝑇 .       (26) 

c) For each place, there is only one arc directed to transitions whose weight equals one. In 

fact, for every i and j, we have 𝑃𝑟𝑒(𝑃𝑖, 𝑇𝑗) = 1 and, therefore, for the whole network: 

𝑃𝑟𝑒 = 𝐼𝑡×𝑡, where t is the total number of places (transitions). 

d) To specify the network, the Post matrix must also be determined. According to Eq. (9), 

the fundamental equation of the CTDPN can be expressed as follows: 

𝑀(𝑘) = 𝑃𝑀(𝑘 − 1)            (27) 

where  

𝑃 = 𝐼 + 𝑊 = 𝐼 + 𝑃𝑜𝑠𝑡 − 𝑃𝑟𝑒           (28) 

since 𝑃𝑟𝑒 = 𝐼, then 𝑃 = 𝑃𝑜𝑠𝑡.          (29)  

Finally, Eqs. (20-25) are rewritten according to the definition for M and based on        

Eq. (29) which identifies the P and, 𝑃𝑜𝑠𝑡 matrices, consequently. Accordingly, the Post matrix 

for the system is obtained as follows: 

𝑃 =

[
 
 
 
 
 
 
 
 

0𝑝×𝑝        0𝑝×𝑟    0𝑝×𝑛  0𝑝×𝑟       0𝑝×𝑟   0𝑝×𝑟 0𝑝×𝑟 0𝑝×𝑟

0𝑟×𝑟        0𝑟×𝑟    0𝑟×𝑛  0𝑟×𝑟       0𝑟×𝑟    0𝑟×𝑟  0𝑟×𝑟 0𝑟×𝑟

𝐵             𝐻          𝐴̂         0𝑛×𝑟     0𝑛×𝑟  0𝑛×𝑟  0𝑛×𝑟  0𝑛×𝑟

𝐶𝐵 + 𝐷    𝐶𝐻      𝐶𝐴̂      0𝑝×𝑟        0𝑝×𝑟   0𝑝×𝑟  0𝑝×𝑟 0𝑝×𝑟

0𝑟×𝑝       𝐼𝑟×𝑟   0𝑟×𝑛  −𝐼𝑟×𝑟         0𝑟×𝑟   0𝑟×𝑟 0𝑟×𝑟   0𝑟×𝑟

0𝑟×𝑝        0𝑟×𝑟   0𝑟×𝑛  0𝑟×𝑟          𝐼𝑟×𝑟   0𝑟×𝑟   0𝑟×𝑟  0𝑟×𝑟

0𝑟×𝑝   0𝑟×𝑟      0𝑟×𝑛   0𝑟×𝑟           0𝑟×𝑟   𝐼𝑟×𝑟 0𝑟×𝑟    0𝑟×𝑟

0𝑟×𝑝      0𝑟×𝑟     0𝑟×𝑛    0𝑟×𝑟      𝛼𝐼𝑟×𝑟  𝛽𝐼𝑟×𝑟 𝛾𝐼𝑟×𝑟 0𝑟×𝑟 ]
 
 
 
 
 
 
 
 

      (30) 
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Here, the coefficients α, β, and γ are the filter coefficients V, which has been considered a 

second-order filter. 

5. EXAMPLES  

By the examples given in this section, implementing the CTDPN for an observer-based 

fault diagnoser is illustrated, and its performance is investigated.  

5.1. Example 1 

In this example a system with discrete-time state equations is considered. The state-

space matrices are as follows: 

𝐴 = [

1 0                0 −0.0098
−0.0001   0.9995             0.001 0
0.0001      0.001           0.999 0

   0                     0                    0.001               0         

], 𝐵 = [0  0 − 0.0126   0]𝑇, 𝐶 = [1 0 0 0],

D = 0. 

The system has one input (p=1), one output (r=1), and four state variables (n=4). Also, 

two additive state faults 𝑓1 = [0.1 0.2 0 0.5]𝑇  and 𝑓2 = [0.5  0  0.3  0.1]𝑇  and one additive 

output fault 𝑓3 = 0.5 are considered. 

5.1.1. Observer Designing  

At First, the observability matrix of the system (OB) is calculated. This matrix - shown 

in the following equation - is full column rank, and the system is observable. 

𝑂𝐵 =

[
 
 
 
 
1                          0                           0                                0 
0.9999921   .19𝑒 − 05    − 4.89𝑒 − 06    − 0.00980
0.9999852   .39𝑒 − 05    − 1.95𝑒 − 05    − 0.01961
0.9999783   .59𝑒 − 05    − 4.40𝑒 − 05    − 0.02942

  ]
 
 
 
 

     (31) 

Thus, a full order state observer can be designed to generate the residuals. The critical 

step is to choose the location of the poles. If the selected poles are close to the unit circle, then 

the convergence time of the observer is longer but more stable. By locating the poles of the 

observer closer than to the origin, the convergence speed increases; but the convergence 

error fluctuations also increases. For further investigation, we consider two cases for the 

location of the observer poles: 𝑃1 = [0.99 0.998 0.997 0.96] is the observer pole vector near 

the unit circle and 𝑃2 =[0.6 0.991 0.7 0.85] is the observer pole vector near the origin. Fig. 1 

shows the output estimation error changes for the two observer pole selection modes.  

In this paper, structured residuals are used for fault diagnosis. These residues are 

obtained by filter V from the estimation error. This filter removes slow changes and the 

average error value is sensitive to large error fluctuations. As Fig. 2 shows, the structured 

residual values for the P1 case are small. In Fig. 3, these residuals are compared for both 𝑃1 

and 𝑃2. It can be seen that the residuals for the P2 mode started at larger values and reach 

almost zero after about 15 ms.  

The structured residual signal should be sensitive to the estimation error induced by 

faults, and - in the faultless case - it must converge to zero immediately. Therefore, by 

selecting the observer poles close to the unit circle, these conditions are provided.  
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By locating the poles of the observer according to P1, the matrix H is obtained as 

follows: 

𝐻 = [ 0.0535   − 0.1984   − 0.1472   − 0.0588]𝑇. 

The V filter coefficients are also selected as V = [α; β; γ] = [1; -1.945; 0.945], which eliminates 

the average error values. 

In the faultless case, the estimation error converges in less than 200 ms to zero and, the 

structured residual values are very small. The structured residuals start at low values (less 

than 0.001) and reach almost zero in less than 200 ms.  
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  Fig. 1. Output estimation error for the two observer pole selection modes of example 1. 
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Fig. 2. Structured residual values for the P1 case of example 1. 
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Fig. 3. Structured residuals for the two observer pole selection modes of example 1. 

5.1.2.  Implementation the Fault Diagnoser by CTDPN  

According to Eq. (26), the marking vector of the realizing CTDPN was formed. It 

contains all needed signal variables to construct the fault diagnoser. In Fig. 4, the desired 

network is presented for the realization of the fault diagnosis system. Here, one place is 

provided for each element of the marking vector of Eq. (26). In the first layer of the CTDPN, 

actual inputs and outputs are given to the network (places 𝑝1 and 𝑝2). As a result, the total 

number of places is 11. Estimated states are generated by the second layer places (𝑝3 to 𝑝6) 

and, the outputs are created by the third layer places (𝑝7 ). Places 𝑝8  to 𝑝10  are used to 

generate the residue r, and its shift values. The 𝑝11  place was also used to create the 

structured residual rs (k). 𝑃𝑟𝑒 = 𝐼11×11 and 𝐻 = 𝑃𝑜𝑠𝑡  matrix is determined by Eq. (30). In this 

figure, to clarify the image, only the input arcs to 𝑥1̂(𝑘) were plotted, and the following 

abbreviations are also used: 

𝑠1×1 = 𝐶𝐵 + 𝐷, 𝑒1×1 = 𝐶𝐻, 𝐾1×4 =  𝐶𝐴̂ = [𝑘1 𝑘2 𝑘3 𝑘4] 

In order to evaluate the system performance, the value of the signal rs (k) - which 

represents the structured residual signal and is equal to the mark value of place 𝑃11 in Fig. 4 - 

is investigated in the following cases: 

5.1.3. Case 1: Faultless System 

In this case, the system is faultless. Fig. 2 shows the structured residuals generated by 

the place 𝑃11 of the CTDPN fault diagnoser (i.e. 𝑟𝑠(𝑘)) for the first 200 ms. It is seen that the 

value of this signal is very little (less than 0.001). Fig. 5 depicts the changes in signal values on 

a larger scale in the range of 1000 ms. The signal values are nearly zero and indicate that the 

actual and estimated outputs by the CTDPN are very close. This condition means that there is 

no fault in the system. 
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Fig. 4. CTDPN realization of the proposed fault diagnoser of example 1. 
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Fig. 5. The residual signal generated by the CTDPN fault diagnoser for the faultless case of example 1. 
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5.1.4. Case 2: Occurrence of Fault 𝑓1 = [0.1 0.2 0 0.5]𝑇 

This case occurs due to the fault 𝑓1 = [0.1 0.2 0 0.5]𝑇, which is an additive fault on the 

system state variables. It is assumed that the fault occurres at t=400 ms. Fig. 6 shows how the 

signal changes from the moment that the fault occurs. This signal appears as a fast positive at 

the moment of fault occurrence. As will be seen in the following cases, the signal generated 

for each type of fault has a different shape. In addition, the maximum peak of the pulse is 

proportional to the fault size. Therefore, based on the structured residual signal generated by 

CTDPN, the type and size of a fault and its occurrence time can be identified. 
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Fig. 6. Residual signal generated by the CTDPN fault diagnoser for case 2 of example 1. 

5.1.5. Case 3: Occurrence of Fault 𝑓2 = [0.5  0  0.3  0.1]𝑇 

In this case, another additive state fault 𝑓2 = [0.1 0.2 0 0.5]𝑇 is considered to occur at 

t=200 s. Fig. 7 shows the residual signal generated by the diagnoser.  
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Fig. 7. Residual signal generated by the CTDPN fault diagnoser for case 3 of example 1. 
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A Comparison between Figs. 6 and 7 shows the differences in shape and size of the 

generated residuals very well. From this distinction, type of the faults can be determined. 

5.1.6. Case 4: Occurrence of Additive Output Fault  

In this case, a fault 𝑓𝑚(𝑘) = 0.5 is added to the output at the moment t = 300s. This fault 

can be the result of a constant bias on an output meter. Fig. 8 shows how the generated 

residual signal differs from the ones in the previous cases. This signal determines the type of 

fault while specifying the time of the fault occurrence. 
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Fig. 8. Residual signal generated by the CTDPN fault diagnoser for case 4 of example 1. 

5.2. Example 2  

Here, a permanently excited DC motor with a rated power of P= 550 W at a rated 

speed n= 2500 rpm is considered [42]. Fig. 9 depicts the signal flow graph of the motor, and 

its specifications are given in Table 1.  

The linear state-space model of this system becomes: 

𝑥̇ = [𝐼𝐴̇
𝜔̇

] = [
−

𝑅𝐴

𝐿𝐴
 −

𝜓

𝐿𝐴

𝜓

𝐽
 −

𝑀𝐹

𝐽

] [
𝐼𝐴
𝜔

] + [

1

𝐿𝐴
 0

0 −
1

𝐽

] [
𝑈𝐴

𝑀𝐿
],        (32) 

𝑦 = [
𝐼𝐴
𝜔

] = [
1 0
0 1

] 𝑥 .          (33) 

Thus, the linear discrete-time state-space representation of the DC motor, with a sampling 

time of 0.001 s, is as follows: 

𝑥(𝑘 + 1) = [
𝐼𝐴(𝑘 + 1)
𝜔(𝑘 + 1)

] = [
0.7966  − 0.0433
0.1538      0.9959

] [
𝐼𝐴(𝑘)
𝜔(𝑘)

] + [
0.1313     0.0117

0.0117  − 0.5201 
] [

𝑈𝐴(𝑘)
𝑀𝐿(𝑘)

].   (34) 

𝑦(𝑘) = [
𝐼𝐴
𝜔

] = [
1 0
0 1

] 𝑥(𝑘).          (35) 

Here, 𝐼𝐴, 𝑈𝐴, and 𝜔 are the measured armature current, armature voltage, and speed of the 

motor, respectively, and 𝑀𝐿 is the load torque.  
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From Eqs. (33) and (35), discrete state-space parameters are obtained as follows: 

𝐴 = [
0.7966 − 0.0433
0.1538     0.9959

] ,𝐵 = [
0.1313       0.0117
0.0117 − 0.5201 

] and 𝐶 = [
1 0
0 1 

]. 

 By calculating the eigenvalues of matrix A, we can see that 𝜆1 = 0.8391 and 𝜆2 = 0.9534  

and the system is stable.  
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Fig. 9. Signal flow graph of the DC motor. 

 
Table 1. Specifications of the DC motor [35]. 

Parameter Value 

Armature resistance RA = 1.52 Ω 

Armature inductance LA = 6.82 ∙ 10−3 

Magnetic flux ψ = 0.33 V s 

Voltage drop factor KB = 2.21 ∙ 10−3 V s/A 

Inertia constant J = 1.92 ∙ 10−3  kg m2 

Viscous friction MF = 0.36 ∙  10−3 Nm s 

 

By calculating ∅𝑜 = [
𝐶
𝐶𝐴

], we can see that the system is completely observable. Thus, a 

full order state observer is designed to generate the residuals. Due to the system stability, 

pole placement of the observer is less sensitive than in the previous example. Here, the 

location of the observer poles is selected as 𝑝1  = 0.9 and 𝑝2  = 0.8  so that the convergence 

speed and the amount of oscillation of the estimation error are appropriate. Two faults are 

considered here: a bias in the armature current sensor (𝑓1) and a bias in the speed sensor (𝑓2). 

In this example, a fault diagnoser based on section 4 is designed for this DC motor. 

Therefore, two structured residuals (𝑟1 and 𝑟2) should be made such that when a fault occurs, 

only its corresponding residual changes and the other residual remains unchanged. Here, 

𝑞 = 2 and therefore, we have:  

𝑌(𝑘) = [𝐼𝐴(𝑘 − 2) 𝜔(𝑘 − 2) 𝐼𝐴(𝑘 − 1) 𝜔(𝑘 − 1) 𝐼𝐴(𝑘) 𝜔(𝑘)]𝑇,     (36) 

𝑈(𝑘) = [𝑈𝐴(𝑘 − 2) 𝑀𝐿(𝑘 − 2) 𝑈𝐴(𝑘 − 1) 𝑀𝐿(𝑘 − 1)  𝑈𝐴(𝑘) 𝑀𝐿(𝑘)]𝑇    (37) 

𝑟𝑠(𝑘) = [𝑟𝑠1(𝑘) 𝑟𝑠2(𝑘)]𝑇 .           (38) 

Here, 𝑟𝑠1(𝑘) and 𝑟𝑠2(𝑘) are the structured residuals corresponding to 𝑓1 and 𝑓2, respectively.  

𝑀(𝑘) is obtained by substituting Eqs. (36-38) in Eq. (26). For generating structured residuals, 

the weighting matrix V is selected to be the same as the matrix of the previous example. 

Selecting this weighting matrix causes the residuals to be independent of one another. 

Finally, the matrices 𝑃𝑟𝑒 = 𝐼16×16 and 𝑝𝑜𝑠𝑡 = 𝑃 are obtained from Eq. (30).  

Based on Eqs. (26) and (30), this CTDPN is constructed as shown in Fig. 10, in which the 

places 𝑃1 to 𝑃16 represent the signals, and the transitions 𝑇1 to 𝑇16 represent the time delays. 
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The performance of the proposed diagnoser is investigated here in three cases. In all cases, 

𝑈𝐴 = 24 𝑣 and 𝑀𝐿 = 0.3 𝑁𝑚 are applied to the DC motor. 
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Fig. 10. CTDPN realization of the proposed fault diagnoser of example 2. 

5.2.1. Case 1: Faultless System 

No fault occurs in this case. Fig. 11 shows the residuals generated by the CTDPN fault 

diagnoser, i.e., 𝑟1(𝑘) and 𝑟2(𝑘). Evidently, the two residual values converge to zero after a 

transient time (about 0.02 s), indicating no fault occurrence. 
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Fig. 11. Residual signals generated by the CTDPN fault diagnoser for the faultless case of example 2. 

5.2.2. Case 2: The Armature Current Sensor Fault 

In this case, a 10% positive bias is added to the measured current armature due to a 

fault of the current sensor. It is assumed that the fault affects the sensor at t=0.3 s. Fig. 12 

shows that 𝑟1(𝑘) is changed at t=0.3 s while 𝑟2(𝑘)remains unchanged. Changes in 𝑟1(𝑘) -

which reveal the current sensor fault - appear as a rapid positive and negative pulse, while 

changes in 𝑟2(𝑘) are negligible. Changes in these structured residues indicate that the fault 𝑓1 

has occurred at t=0.3 s.  
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Fig. 12. Residual signals generated by the CTDPN fault diagnoser for case 2 of example 2. 
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5.2.3. Case 3: The Speed Sensor Fault 

This case is similar to case 2, differing in that only the speed sensor is affected by the 

same fault of that case. The changes in the residuals are depicted in Fig. 13. In this figure, 

𝑟1(𝑘) remains unchanged, whereas 𝑟2(𝑘) is changed, indicating that 𝑓2 occurred at t=0.2 s.  
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Fig. 13. Residual signals generated by the CTDPN fault diagnoser for case 3 of example2. 

6. CONCLUSIONS 

This paper presented a new method for realizing a fault diagnosis system for discrete-

time linear dynamic systems based on CTDPN. The fault detection method was based on the 

state observer. As shown in the example, this network can detect and distinguish faults. One 

of the main advantages of Petri nets is the introduction of an intuitive model of the system. 

Based on the method proposed in this paper, this advantage becomes available for a classic 

fault diagnosis system.  

In light of the CTDPN realization of the fault diagnosis system, the deadlock analysis 

for this system may be possible that, in its turn, improves the reliability of the fault detection 

system. Another related field for future researches is developing this method for hybrid 

systems; with developing the presented approach in this paper, an integrated fault diagnosis 

system can be introduced for them. 
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